A Stacking-Based Data Mining Solution to Customer Churn Prediction

نویسندگان

چکیده

In today’s competitive world, organizations are in a constant struggle to retain their current customers while attracting new through various methods. Customer churn is major challenge different industries and companies. Despite initial successful attempts at customers, soon face the fact that may turn away toward rivals. By identifying candidates, will be able guarantee future success by revising customer relationship management policy. Analyzing data of telecommunications industries, this study provided an effective early-churn-detection solution using modern techniques stacking mining algorithms. Research findings indicate integrating support vector machines (SVMs) with chi-square automatic interaction detection (CHAID) decision tree can yield best outcome. The results show proper accuracy proposed prediction solution. addition, contributed improved results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Mining Techniques in Customer Churn Prediction

Customer churn prediction is one of the most important problems in customer relationship management (CRM). Its aim is to retain valuable customers to maximize the profit of a company. To predict whether a customer will be a churner or non-churner, there are a number of data mining techniques applied for churn prediction, such as artificial neural networks, decision trees, and support vector mac...

متن کامل

Modelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach

In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...

متن کامل

Applying Data Mining to Customer Churn Prediction in an Internet Service Provider

A business incurs much higher charges when attempting to win new customers than to retain existing ones. As a result, much research has been invested into new ways of identifying those customers who have a high risk of churning. However, customer retention efforts have also been costing organizations large amounts of resources. Same is the situation in ISP industry in I.R.Iran. Exploiting the u...

متن کامل

A Review on Customer Churn Prediction in Telecommunication Using Data Mining Techniques

Customer churn is the term which indicates the customer who is in the stage to leave the company. Particularly it is happening recurrently in the telecommunication industry and the telecom industries are also in a position to retain their customer to avoid the revenue loss. Prediction of such behaviour is very vital for the present market and competition and Data mining is the one of the effect...

متن کامل

A Fuzzy Rule-Based Learning Algorithm for Customer Churn Prediction

Customer churn has emerged as a critical issue for Customer Relationship Management and customer retention in the telecommunications industry, thus churn prediction is necessary and valuable to retain the customers and reduce the losses. Recently rule-based classification methods designed transparently interpreting the classification results are preferable in customer churn prediction. However ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Relationship Marketing

سال: 2021

ISSN: ['1533-2667', '1533-2675']

DOI: https://doi.org/10.1080/15332667.2021.1889743